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A continuum of modelling approaches

Agent-based modelling: detailed simulation of epidemics at the

A individual level ‘

o Compartmental models: mechanistic description of infection ‘
z processes at the population level via compartments g::
e Z
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g o Statistical/empirical models: (interpretable) statistical de- b
= scription of observable patterns .
! +
' o Machine learning approaches: mostly black-box approaches v

to capture observable patterns

Source: my PhD thesis, so highly authoritative.
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EE and compartmental epidemic models

» Epidemics are often modelled using compartmental models.
n

&0 ® 6‘eio e 6 lo®

» “mechanistic” reflection of disease spread.

» traditionally continuous-time and deterministic (ODEs).

» susceptible dynamics are key for model behaviour.



EE and compartmental epidemic models (I1)

» The endemic-epidemic model can be seen as a strongly
simplified discrete-time stochastic SIR model.

» see Bauer and Wakefield! for detailed derivations.

» But ultimately the endemic-epidemic model is not a fully
mechanistic model.

» susceptible dynamics are ignored.

» many model elements are pragmatic rather than derived from
first principles (e.g., negative binomial distribution).

1C Bauer and J Wakefield (2018): Stratified space-time infectious disease

modelling, with an application to hand, foot and mouth disease in China.
JRSSA.



EE vs TSIR

» If you are looking for a (univariate) model with susceptible
dynamics, Time Series SIR may be the right choice for you.

~ It ‘ /t_1,$t_1 ~ NegBin()\t, 1//1--1)
&+-0-® r= D5

t N t—11t—1
St = Stfl — It.

» R package: Becker and Grenfell (2017): tsiR: An R package
for time-series Susceptible-Infected-Recovered models of
epidemics. PLOS One.



EE and count time series models

» Technically, the EE model is a multivariate Integer-valued

Generalized Autoregressive Conditional Heteroscedasticity
(INGARCH) model.

» If you care about ergodicity, stationarity etc, there is a vast
literature on INGARCH models.

» Several R packages exist:

tscount: An R Package for Analysis of Count Time
Series Following Generalized Linear Models

Tobias Liboschik  Konstantinos Fokianos Roland Fried
TU Dortmund University University of Cyprus TU Dortmund University

Inference for Network Count Time Series
with the R Package PNAR ® the & journal

by Mirko Armillotta, Michail Tsagris, and Konstantinos Fokianos



What the EE model offers

» EE is more pragmatic than full mechanistic models.

» simple base model facilitates multivariate extension.
» latent susceptible dynamics are ignored.
» simple maximum likelihood inference can be used.

» EE is more tailored than generic count time series
models.

» identifiability ensured by “semi-mechanistic” parameterizations.
» complexity “spent” on epidemiologically relevant aspects.

» The EE model has a robust and longstanding
implementation in the R package surveillance.



Reminder: Multivariate model structure

» The multivariate endemic-epidemic model is defined as

Y | past ~ NegBin(pt, ) (1)
N

Urt = Ve + ¢rt X Z Wyrp X Yr’,t—l (2)
r'=1

> As in surveillance within-region dynamics are given extra
flexibility we often also write

Hre = Kz&/‘i‘ Art X Yr,tfl + P ¥ Z Wyrp X Yr’,tfl- (3)

end ar r'#r

ne

» How do we handle all these parameters smartly?



Semi-mechanistic elements

» The EE framework accommodates the following
epidemiologically meaningful mechanisms:

» seasonality (and other external drivers).

simple but well-motivated mechanisms for spatial spread.
integration of social contact data.

encoding of generation times.

spatially smooth efects (random effects).



Seasonality and covariates

» Reminder: the parameters 1/, ;, A\, ; and ¢, ; are modelled in a
log-linear fashion to account for seasonality or other
covariates, e.g.,

log(vrt) = aj + ysin(27t/52) + § cos(27t/52).

» Often it makes sense to share some parameters (. 0) across
units r = 1,..., N, while others are unit-specific (/).

formula_end <- addSeason2formula(
"0 + fe(1, unitSpecific = TRUE),
S =1)

» Intuition: Seasonality and other covariates modify disease
import and transmission (= reproductive numbers).



The power law

» A simple spatial coupling (and the default in surveillance)

is to set

1 if r,r" are neighbours
Wyrp =
0 else.

» A smart way to allow dependences between indirect
neighbours is a power law,

Wy x (0p, +1)7°.

» Weights are typically normalized such that Ef,’zl Wy = 1.

formula_ne <- list(f = “0 + fe(l, unitSpecific = TRUE),
weights = W_powerlaw(maxlag = 5,
normalize = TRUE,
log = TRUE))



Power law (II)

» Example: How does one district “distribute” its infectious
pressure under the power law (p = 2.5)?




Why a power law?

» Empirical evidence indicates that “the distribution of
travelling distances decays as a power law.”
» D Brockmann, L Hufnagel, T Geisel (2006): The Scaling Laws of
Human Travel. Nature.

» In the EE framework, power laws have been found to
outperform other (more complex) specifications.

» S Meyer and L Held (2014): Power-law models for infectious disease
spread. AOAS.

> Geilhufe et al (2014): Power law approximations of movement
network data for modeling infectious disease spread. Biometrical
Journal.



Social contact matrices

» When modelling spread across age groups rather than space,
social contact data can be used to parameterize the eryr.z

Contact matrix (¢yg) for g’ — g,
for example from POLYMOD
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» Side note: Pioneering work3 came from U Hasselt!

2 . . . . . .
S Meyer and L Held (2017): Incorporating social contact data in spatio-temporal models for infectious
disease spread. Biostatistics.
Hens et al (2009): Estimating the impact of school closure on social mixing behaviour and the transmission
of close contact infections in eight European countries. BMC Infectious'Diseases:



Generation times

» Using the hhh4addon package, the EE model can be extended

to?
Yy | past ~ NegBin(pt, 1) (4)
N D
Mrt = Ve + Gt X ZZWr’r X Ug X Yr’,t—da (5)
r'=1d=1
where ug, ..., up is the generation time / serial interval
distribution.

“Bracher and Held (2020). Endemic-epidemic models with discrete-time
serial interval distributions for infectious disease prediction. IJF.



Generation times (I1)

» Generation time distributions can be fixed based on literature
estimates or estimated parametrically (?profile_par_lag),

e.g.,

» Example: Dengue in Puerto Rico (Bracher and Held 2020).

weight

ug=(1-m

1.0

0.8

0.6

0.

IS

0.

)

0.0

)k—lﬂ_

fixed
Poisson
triangular
geometric
unrestricted
literature

T
1

hl ml‘
T
3

T
2
lag

T
5

..||‘ i
T
4




Spatial random effects

» For models with many strata and many parameters, spatially
structured (CAR) random effects can be used.

» Example from Meyer et al®:

- epressive ol ati al al? ) E. ]
(a) Autoregressive o, (b) Spatio-temporal o (¢) Endemic o'

Figure 18: Maps of the estimated random intercepts.

®S Meyer et al (2017): Spatio-Temporal Analysis of Epidemic Phenomena
Using the R Package surveillance. JSS.



What is the EE model used for?

» The EE model was conceived as a generic tool to “provide an
adequate fit, reliable one-step-ahead prediction intervals” and
“capture space—time dependence caused by the spatial spread
of a disease over time” (Held, Hohle, Hoffmann 2005).

» Over time it has been used for a variety of purposes (some
anticipated, some not).



Forecasting

» Robert et al® use the EE framework to generate national and
subnational-level forecasts of COVID-19 cases and deaths.
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Image license: http://creativecommons.org/licenses/by/4.0/

A Robert et al (2024): Predicting subnational incidence of COVID-19
cases and deaths in EU countries. BMC InfetiousDiseases.


http://creativecommons.org/licenses/by/4.0/

Forecasting (II)

» Within the RespiNow Consortium, we use the EE model e.g.,
to predict weekly SARI hospitalizations in Germany:

RESPINOW-Hub: Nowcasting of respiratory pathogens in Germany (Beta)
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Vaccination

» Herzog et al” study the impact of measles vaccination
coverage on the occurrence of measles.
» Model for bi-weekly measles counts Y,: in 16 German states:

Y. | past ~ NegBin(pr, 1r)
Mt = Vit + Ar X Xe—1
log(vr,t)= ai + 7sin(27t/26) + 6 cos(27t/26).

Ar= Bo + P1 X log(proportion unvaccinated school starters in r)

> Result: “... a significant association between estimated
vaccination coverage at school entry and the overall incidence
of measles’.’

» Data are available in surveillance.

S Herzog et al (2011): Heterogeneity in vaccination coverage explains the
size and occurrence of measles epidemics in German surveillance data. Epi&Inf.



NPIs / counterfactuals

» Grimée et al® study the impact of border closures between
Switzerland and ltaly by producing conterfactual scenarios.

Predictions under scenarios A, B and b
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Image license: https://creativecommons.org/licenses/by/4.0/

8M Grimée et al (2022): Modelling the effect of a border closure between
Switzerland and ltaly on the spatiotemporal spread of COVID-19 in
Switzerland. Spatial Statistics.


https://creativecommons.org/licenses/by/4.0/

Estimation of local reproductive numbers

» Bauer and Wakefield (HMF disease) and Bracher and Held®
(rotavirus) estimate local effective reproductive numbers R;.

» In multivariate models (vector notation),
E(Y:) | past = v + @Y1,
the largest eigenvalue of ®; corresponds to R;.

» Example: R; of rotavirus in Berlin:

154 =+ n=1 — ©=0043 = = 1=0043
t0 0.063

calendar half-week

gBracher and Held (2020): A Marginal Moment Matching Approach for Fitting Endemic-Epidemic Models to
Underreported Disease Surveillance Counts. Biometrics.



» We will now run through the development of a simple
multivariate model.

» Head over to https://codeberg.org/smeyer/hhhdgeomed.



https://codeberg.org/smeyer/hhh4geomed

study: Norovirus (and rotavirus) in Berlin

(a) Norovirus: City of Berlin (b) Rotavirus: City of Berlin
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Case study: Norovirus (and rotavirus) in Berlin

(e) Norovirus: District of Pankow (f) Rotavirus: District of Pankow
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